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Abstract
In the recently revised diagnostic criteria for Alzheimer disease (AD), the National Institute on
Aging and Alzheimer Association suggested that confidence in diagnosing dementia due to AD
and mild cognitive impairment (MCI) due to AD could be improved by the use of certain
biomarkers, such as 18F-FDG PET evidence of hypometabolism in AD-affected brain regions.
Three groups have developed automated data analysis techniques to characterize the AD-related
pattern of hypometabolism in a single measurement. In this study, we sought to directly compare
the ability of these three 18F-FDG PET data analysis techniques—the PMOD Alzheimer
discrimination analysis tool, the hypometabolic convergence index, and a set of meta-analytically
derived regions of interest reflecting AD hypometabolism pattern (metaROI)—to distinguish
moderate or mild AD dementia patients and MCI patients who subsequently converted to AD
dementia from cognitively normal older adults.

Methods—One hundred sixty-six 18F-FDG PET patients from the AD Neuroimaging Initiative,
308 from the Network for Efficiency and Standardization of Dementia Diagnosis, and 176 from
the European Alzheimer Disease Consortium PET study were categorized, with masking of group
classification, as AD, MCI, or healthy control. For each AD-related 18F-FDG PET index, receiver-
operating-characteristic curves were used to characterize and compare subject group
classifications.
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Results—The 3 techniques were roughly comparable in their ability to distinguish each of the
clinical groups from cognitively normal older adults with high sensitivity and specificity.
Accuracy of classification (in terms of area under the curve) in each clinical group varied more as
a function of data-set than by technique. All techniques were differentially sensitive to disease
severity, with the classification accuracy for MCI due to AD to moderate AD varying from 0.800
to 0.949 (PMOD Alzheimer tool), from 0.774 to 0.967 (metaROI), and from 0.801 to 0.983
(hypometabolic convergence index).

Conclusion—The 3 tested techniques have the potential to help detect AD in research and
clinical settings. Additional efforts are needed to clarify their ability to address particular scientific
and clinical questions. Their incremental diagnostic value over other imaging and biologic
markers makes them easier to implement by other groups for these purposes.
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The availability of in vivo biomarkers of Alzheimer disease (AD) neuropathology has
recently led to the development of new criteria (1–5) that reconceptualize AD as a disease
featuring the combination of brain amyloidosis and neurodegeneration. To effectively
translate the revised diagnostic criteria into clinically validated criteria for AD diagnosis,
reliable metrics, among the several developed so far, need to be selected, compared, and
standardized.

Hippocampal atrophy and cerebrospinal fluid biomarkers have been shown to be valid
indicators of AD pathology (6,7), and standardization efforts are ongoing (8,9). The third
diagnostic marker proposed in the revised diagnostic criteria is cortical temporoparietal
hypometabolism on 18F-FDG PET. Temporoparietal hypometabolism has been shown for
many years to be a valid indicator of synaptic dysfunction that accompanies
neurodegeneration in AD (10–12) and can be used as a diagnostic marker from the earliest
stages of disease (13,14).

In the last few years, several global indices of AD-related hypometabolism, based on
different image processing procedures with different levels of complexity, robustness, and
automation, have been developed: the so-called PMOD (PMOD Technologies) Alzheimer
discrimination analysis tool (PALZ) (11,15), an AD-related hypometabolic convergence
index (HCI) (16), and an average metabolism computed on a set of metaanalytically derived
regions of interest reflecting an AD hypometabolism pattern (metaROI) (17). All of these
indices provide objective measures of metabolic damage specific to AD and are based on
voxel-by-voxel analysis of 18F-FDG PET images. PALZ and HCI computation involves the
comparison of individual 18F-FDG PET images to a reference database of scans of
cognitively normal elderly individuals through the voxelwise t test. The PALZ score is
computed as a voxel-by-voxel sum of t scores in a predefined AD-pattern mask, whereas
HCI is calculated as the inner product of the individual z map and a predefined AD z map.
PALZ and HCI have been shown able to separate patients with clinical AD from healthy
older persons (15,16). HCI has been shown able to predict the development of dementia in
patients with mild cognitive impairment (MCI), whereas metaROI has been shown sensitive
in the detection of longitudinal cognitive and functional changes in AD and MCI patients
(17). However, to our knowledge, the diagnostic performances of the 3 global indices have
never been directly compared.

The aim of this study was to perform a head-to-head comparison of the diagnostic
performance of available global indices of AD-specific hypometabolism at different disease
stages. This is a necessary step toward the standardization of 18F-FDG PET biomarkers,
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opening the way to effective translation of the revised diagnostic criteria of the National
Institute on Aging and Alzheimer Association into daily clinical practice.

MATERIALS AND METHODS
Subjects

The subjects and patients were taken from 3 independent 18F-FDG PET multicenter
datasets: AD Neuroimaging Initiative (ADNI) ((18) n = 166), the Network for Efficiency
and Standardization of Dementia Diagnosis (NEST-DD) ((11,19) n = 308), and the
European Alzheimer Disease Consortium PET Study (EADC-PET) ((20) n = 176). A
detailed description of the datasets can be found in section 1.1 of the supplemental data
(supplemental materials are available online only at http://jnm.snmjournals.org).

Control Dataset—The control dataset, used in receiver-operating-curve (ROC) analyses
to assess the diagnostic performance of 18F-FDG PET global indices on different patient
datasets, was chosen so as to be independent from data used to define any metric involved in
the study. This is a mandatory factor to avoid circularity. We included controls from NEST-
DD (all those not previously used to define the PALZ metric (11,15), n = 35) and all
controls from the EADC-PET database with available and high-quality baseline 18F-FDG
PET data (n = 113).

Test Datasets—Test datasets, used to assess and compare the diagnostic performance of
different global indices, were all the available independent samples of AD patients taken
from the NEST-DD, EADC-PET, and ADNI databases with available baseline 18F-FDG
PET data, namely ADNI patients with mild to moderate AD (n = 96) and MCI due to AD (n
= 73), NEST-DD patients with mild to moderate AD (n = 242) (15) and MCI due to AD (n =
31), and EADC-PET patients with MCI due to AD (n = 63). MCI due to AD was defined as
a diagnosis of MCI at baseline followed by conversion to AD during follow-up; MCI
patients who converted to non-AD dementia were excluded from the study.

To further investigate diagnostic performance at different disease stages, we subdivided AD
patients from the NEST-DD and ADNI datasets into mild and moderate (NEST-DD: 82
patients with mild AD and 160 with moderate AD; ADNI: 53 patients with mild AD and 43
with moderate AD) on the basis of the Mini Mental State Examination (MMSE) score (mild
AD: MMSE ≥ 24; moderate AD: MMSE < 24).

Groups of patients with MCI due to AD were disaggregated into fast and slow converters on
the basis of conversion time (fast converters: conversion time ≤ 12 mo; slow converters:
conversion time > 12 mo) to assess the ability of each index to predict short-term or long-
term clinical progression from MCI to probable AD (NEST-DD: 13 fast converters and 18
slow converters; ADNI: 24 fast converters and 49 slow converters; EADC-PET: 17 fast
converters and 46 slow converters).

18F-FDG PET Summary Metrics
18F-FDG PET global indices of AD-related hypometabolism used in the study were PALZ
(11), HCI (16), and metaROI average (17) (the latter converted to W-scores according to
previously published procedures (21,22)). Each global index was computed for all
baseline 18F-FDG PET images in the development and test datasets.

All metrics are based on voxel-by-voxel analysis of 18F-FDG PET images and provide a
single AD-related hypometabolism measure; however, they are computed using different

Caroli et al. Page 3

J Nucl Med. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://jnm.snmjournals.org


processing procedures. A complete description is provided in section 1.3 of the
supplemental data.

PALZ score computation requires the commercially available PMOD software, whereas
both HCI and metaROI require the Statistical Parametric Mapping (SPM) software package
(http://www.fil.ion.ucl.ac.uk/spm/), running on a Matlab environment (The MathWorks,
Inc.). In addition, computation of metaROI W-scores requires 5 previously defined
metaROIs (left angular, right angular, left temporal, right temporal, and bilateral posterior
cingulate binary masks in Montreal Neurological Institute space) (17), which are available
on the ADNI Web site (http://adni.loni.ucla.edu/) and a pons and cerebellar vermis ROI in
Montreal Neurological Institute space used for scaling. HCI computation requires a
predefined normative database, a z score map of AD-related cerebral hypometabolism, and
the HCI software package, written in Matlab.

As PMOD supports different image formats (Digital Imaging and Communications in
Medicine [DICOM], ECAT, Analyze, Neuroimaging Informatics Technology Initiative
[NIFTI], Interfile, and others), the PALZ score can be computed from 18F-FDG PET images
in any format without the need to convert them. However, the use of different formats gives
rise to slight differences in PALZ scores (slight differences already appearing in images
after normalization), in particular between Analyze and NIFTI/DICOM formats. DICOM
format is preferred, as it contains patient-, acquisition-, and reconstruction-related
descriptive information, allowing the display of images with consistent orientation (left/
right, anterior/posterior, inferior/superior) and the automatic extraction of patient’s age,
needed for calculation; if any other format is used, images must be checked for correct
display orientation and eventually reoriented to anatomic position, preliminary to PALZ
score computation. On the other hand, both HCI and metaROI, based on SPM subroutines,
require Analyze or NIFTI format, and 18F-FDG PET images in other formats need to be
converted to either of them. For HCI and metaROI computation, Analyze and NIFTI formats
are equivalent, as the use of either leads to the same result. A preliminary orientation check
is required for Analyze. For both formats, 18F-FDG PET reorientation to anatomic position
(usually needed, as 18F-FDG PET images are acquired in radiologic convention) is
automatically performed during SPM normalization.

Once the 18F-FDG PET image is imported into PMOD, the PALZ score computation is fully
automated and takes about 2 min per subject. Although PALZ computation could be
performed in batch mode, any benefit provided by batch processing is limited because a
visual check of image normalization is advisable for each case. Once all subjects of the
normative dataset and all patients have been normalized to the default PET template space,
and a text file listing patient normalized images has been created, HCI computation is
automatically performed by the HCI package. HCI computation requires about 5 min per
subject and can be performed in a batch. MetaROI computation, requiring the application of
different SPM subroutines (normalization, metaROI average computation, scaling to pons
and cerebellar vermis, average computation, and final age correction) is the most time-
consuming (about 15 min per subject) and the least automated procedure. MetaROI
computation can be performed in a batch. Computational times were estimated using a Core
2 Duo processor T5450 personal computer (Intel) (1.66-GHz, 667-MHz front-side bus, 2-
MB level 2 cache, Windows XP operating system [Microsoft]).

The technical requirements, robustness, and automation of different 18F-FDG PET global
indices are summarized in Table 1.
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ROC Analyses
For each global index of AD-like hypometabolism (PALZ, HCI, and metaROI) and for each
test dataset (ADNI AD, ADNI MCI due to AD, NEST-DD AD, NEST-DD MCI due to AD,
and EADC-PET MCI due to AD) and subgroup of patients (mild and moderate AD, fast and
slow converters) separately, ROC curves were generated together with the control dataset.
Areas under the curve (AUCs) and pertinent 95% confidence intervals were computed. To
compare the diagnostic performance of different global indices of AD-like hypometabolism
for each group and subgroup of patients, AUCs related to different indices were compared
using the test of De Long et al. for 2 correlated ROC curves (23), setting the threshold for
significance at a P value of 0.05.

All statistical analyses were performed using R software (www.r-project.org/), version
2.12.1. ROC analyses were performed using the pROC R package (24).

RESULTS
Normative and Patient Dataset Characterization

The normative datasets included 148 healthy controls from the NEST-DD and EADC-PET
datasets (mean age ± SD, 66 ± 7 y; 69 men and 79 women). The NEST-DD controls were
enrolled in 4 clinical centers (Cologne: n = 19, 62 ± 4 y old, 63% women; Liege: n = 12, 64
± 5 y old, 58% women; Florence: n = 2, 60 ± 8 y old, no women; Dresden: n = 2, 57 ± 11 y
old, 50% women), and the EADC-PET controls were enrolled in 5 different centers
(Brescia: n = 27, 65 ± 5 y old, 52% women; Genoa: n = 36, 69 ± 7 y old, 67% women;
Marseilles: n = 10, 66 ± 5 y old, 40% women; Munich: n = 19, 68 ± 8 y old, 47% women;
Amsterdam: n = 21, 66 ± 7 y old, 38% women). Table 2 shows the main sociodemographic
and clinical features and the 18F-FDG PET global indices of controls included in the
normative dataset, disaggregated by dataset and enrollment center. The healthy subjects who
were enrolled in the different clinical centers had comparable clinical features and 18F-FDG
PET global indices, suggesting homogeneity of the multicenter normative dataset.

Ninety-five AD patients from ADNI (76 ± 7 y old, 41% women) and 242 AD patients from
NEST-DD (71 ± 8 y old, 65% women), subdivided into mild and moderate AD, were
included in the study. Seventy-one patients with MCI due to AD from ADNI (75 ± 7 y old,
39% women), 31 from NEST-DD (71 ± 6 y old, 61% women), and 63 from EADC-PET (71
± 9 y old, 56% women), subdivided into fast and slow converters, were further included.
Table 3 shows the main sociodemographic and clinical features and the 18F-FDG PET
global indices of each group and subgroup of AD and MCI due to AD. As expected, in both
the ADNI and the NEST-DD datasets, AD patients at increasing disease stage (MCI due to
AD, mild AD, and moderate AD) showed decreasing MMSE scores and increasing AD-like
hypometabolism according to all 3 global metrics. Within patients with MCI due to AD, fast
and slow converters showed similar MMSE scores but no univocal trends in AD-like
hypometabolism.

18F-FDG PET Summary Metrics in Comparison: Diagnostic Performance
Figures 1–5 compare the diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism in terms of ROC curves for each group and subgroup of AD (Figs. 1 and 2)
and MCI due to AD (Figs. 3–5). Pertinent AUCs are summarized and statistically compared
in Supplemental Table 1.

In all ADNI test datasets, HCI showed the highest AUCs; HCI AUC was significantly
higher than metaROI and PALZ both in the whole AD group (P < 0.005 and P < 0.001,
respectively) and in the mild and moderate AD subgroups (mild AD: P < 0.005 and P <
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0.005, respectively; moderate AD: P < 0.005 and P < 0.01, respectively). HCI AUC was
significantly higher than PALZ AUC in the whole group of MCI due to AD (P < 0.05) and
in the fast-converters subgroup (P < 0.05). In all NEST-DD test datasets, metaROI showed
the highest AUCs; metaROI AUC was significantly higher than PALZ in the whole AD
group and in the mild AD subgroup (P < 0.05), whereas in the moderate AD subgroup,
AUCs pertinent to all global metrics were notably high, with no significant differences
among them. MetaROI AUC was significantly higher than both the PALZ AUC and the HCI
AUC in the whole group of MCI due to AD (P < 0.01 and P < 0.05, respectively) and
significantly higher than PALZ AUC in the slow-converters subgroup (P < 0.05). In EADC-
PET, the test dataset for MCI due to AD and the PALZ subgroups showed the highest
AUCs; PALZ AUCs were significantly higher than metaROI AUCs both in the whole group
of MCI due to AD (P < 0.005) and in the fast- and slow-converters subgroups (P < 0.05),
and PALZ AUCs were significantly higher than HCI in the whole group of MCI due to AD
(P < 0.05) and in the fast-converters subgroup (P < 0.05).

For all indices, AUC increased in AD groups at increasing disease stage (being highest for
moderate AD and lowest for MCI due to AD), varying from 0.800 to 0.949 (PALZ), from
0.774 to 0.967 (metaROI), and from 0.801 to 0.983 (HCI). Differences in AUCs between
mild and moderate AD were much larger in the NEST-DD than in the ADNI dataset.
Diagnostic performance in subgroups with MCI due to AD was not consistent across
different datasets, being either higher in fast converters than slow converters (ADNI: all
indices; EADC-PET: PALZ) or vice versa (NEST-DD: all indices; EADC-PET: HCI and
metaROI).

DISCUSSION
In the current study, we considered three 18F-FDG PET global indices (PALZ, HCI, and
metaROI) providing objective measures of AD-related hypometabolism, and we compared
them both in technical terms and in terms of diagnostic performance on several independent
groups of patients at different stages of AD, taken from the 3 largest 18F-FDG PET datasets
currently available (ADNI, NEST-DD, and EADC-PET).

Global metrics show differences in complexity, technical requirements, and automation
level. Their diagnostic performance considerably changed according to test dataset and
disease stage, pointing out that no global index can be defined as the best-performing. For
all indices, diagnostic performance improved with increasing disease severity, whereas in
MCI due to AD (fast and slow converters), diagnostic performance was not consistent across
different datasets.

In the literature, there are few reports of the diagnostic performance of 18F-FDG PET global
metrics in AD patients at different disease stages. PALZ performance was recently assessed
in both ADNI and NEST-DD AD patient groups (15): despite using different normative
data-sets to assess specificity (either ADNI or NEST-DD, according to AD patient group),
the authors found similar ROC curves and AUCs; to our knowledge, PALZ diagnostic
performance in MCI due to AD has never been studied. HCI performance was previously
assessed in terms of its ability to distinguish between AD patients, MCI patients who
converted to AD, stable MCI patients, and controls and to predict rates of progression from
MCI to probable AD (16). Because in the current paper we used a modified version of HCI,
current findings could not reliably be compared with previous ones. Finally, metaROI index
performance was previously assessed in terms of sensitivity to detect longitudinal change in
both cognitive and functional measurements within AD and MCI (17); to our knowledge,
metaROI diagnostic performance in AD patients at different disease stages has never been
studied.
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All three 18F-FDG PET global metrics under comparison were developed specifically for the
discrimination between AD patients and controls. 18F-FDG PET metrics of AD-like
hypometabolism could be used neither for differential diagnosis among various forms of
dementia (which could, however, show abnormal scores on any of them) nor for
highlighting vascular damage (which should be assessed using different techniques). Thus,
patients with dementing diseases other than AD were not considered for the current
investigation.

The diagnostic performance of 18F-FDG PET indices was assessed in patients with AD at
different stages (ranging from MCI due to AD to moderate AD), whereas MCI patients who
did not convert to AD during follow-up were not considered. Although it would have been
interesting to compare the ability of 18F-FDG PET indices to identify patients who will
never convert to dementia (true-negatives), given that the minimum observation time
required to ensure no conversion is 5–6 y (25) we could not exclude the possibility that
patients who had not converted during the follow-up time (much shorter than 5 y for most
available MCI patients) would have converted in the future, and we would thus have had
unreliable results.

The control dataset used in ROC analyses to assess the diagnostic performance of 18F-FDG
PET global indices on different AD patient datasets included controls from the NEST-DD
and EADC-PET databases. Despite the many strengths of ADNI, in that study the healthy
subjects may not be fully representative of the healthy population, as they have been shown
(although in quite a small sample) to have a high rate of Pittsburgh compound B positivity
(26), probably due to the recruitment modality. On the other hand, achieving a
representative normative database is quite difficult, independently of selection modality.
Despite the fact that controls from the EADC-PET and NEST-DD datasets have shown
homogeneous sociodemographic, clinical, and metabolic features across different enrollment
centers, one should be skeptical about the representativeness of the healthy elderly
population. The use of the same normative dataset to assess the diagnostic performance of
all 18F-FDG PET global metrics under comparison on each test dataset improved the
reliability of head-to-head comparisons. Furthermore, the independence of the normative
dataset from all datasets used to develop and optimize different metrics made it possible to
avoid any circularity, which could have biased the comparison.

Because each algorithm handled age differently, the age of the controls could be a potential
confounding factor. Age correction embedded in PALZ and metaROI computation enabled
the removal of any variance due to age. As the current implementation of HCI does not take
age into account but significant linear dependence was found in the normative dataset,
further work should be done to investigate the effect of age on HCI and to properly correct
for such an effect under all possible diagnostic conditions.

Some limitations should be considered in the interpretation of the present results. First, as
visual rating by expert physicians still represents the gold standard clinical method of
assessing AD-like hypometabolism on 18F-FDG PET, the diagnostic performance and
accuracy of global metrics should be preliminarily compared with visual rating by
independent expert raters. Second, the 3 global metrics included in this head-to-head
comparison are not the only automated methods to assess AD-like hypometabolism on 18F-
FDG PET images; the 3 metrics should be further compared with other available voxel-
based techniques, such as single-case SPM (27) or 3-dimensional stereotactic surface
projection and NEUROSTAT-based indices (28). Third, patients with MCI due to AD were
disaggregated into fast and slow converters on the basis of conversion time since enrollment;
however, because the time of symptom onset is unknown (fast converters could be enrolled
after having symptoms for a long time), caution should be used when considering such
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subgroupings. Finally, considerations about the user friendliness of the three 18F-FDG PET
summary metrics are based on their current implementation; however, they were all
implemented for academic use. Additional programming can make them more automated
and user-friendly for clinical settings.

CONCLUSION
The current study showed that the 3 tested AD-related 18F-FDG PET global metrics have the
potential to help detect AD in research and clinical settings. As different metrics have
different technical requirements and levels of automation, the choice among them should be
driven by available resources (software and technical skills). Furthermore, as the head-to-
head comparison in terms of diagnostic performance revealed that no 18F-FDG PET global
index can be defined as the best-performing, the choice among them should rather be based
on the specific purpose of use. Additional efforts are needed to clarify the ability of 18F-
FDG PET global metrics to address particular scientific and clinical questions (e.g.,
differential diagnosis of dementia, prediction of subsequent decline over different time
points or prediction of neuropathology, reduction of the number of patients needed for a
clinical trial using clinical or biomarker endpoints), to determine their incremental
diagnostic value over other imaging and biologic markers (e.g., hippocampal atrophy or
amyloid load), and to make them easier to implement by other groups for these purposes.
The current study is a first step toward several future directions. The potential increase in
diagnostic accuracy of the combination of 18F-FDG PET with structural or anatomic
imaging and biochemical bio-markers could be investigated, in view of the effective
translation of the revised diagnostic criteria of the National Institute on Aging and
Alzheimer Association into daily clinical practice. Moreover, 18F-FDG PET global metrics
of non–AD-like (e.g., frontotemporal dementia–like) hypometabolism could be designed
and developed to help in early and differential diagnosis of non-AD dementias.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
ROC curves showing diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism (black: PALZ; blue: HCI; red: metaROI) on different groups of AD
patients from ADNI.
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FIGURE 2.
ROC curves showing diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism (black: PALZ; blue: HCI; red: metaROI) on different groups of AD
patients from NEST-DD dataset.
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FIGURE 3.
ROC curves showing diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism (black: PALZ; blue: HCI; red: metaROI) on different groups of MCI due to
AD patients from ADNI dataset.
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FIGURE 4.
ROC curves showing diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism (black: PALZ; blue: HCI; red: metaROI) on different groups of MCI due to
AD patients from NEST-DD dataset.
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FIGURE 5.
ROC curves showing diagnostic performance of 18F-FDG PET global indices of AD-like
hypometabolism (black: PALZ; blue: HCI; red: metaROI) on different groups of MCI due to
AD patients from EADC-PET dataset.
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